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We propose a time-dependent many-body approach to study the short-time dynamics of correlated electrons
in quantum transport through nanoscale systems contacted to metallic leads. This approach is based on the time
propagation of the Kadanoff-Baym equations for the nonequilibrium many-body Green’s function of open and
interacting systems out of equilibrium. An important feature of the method is that it takes full account of
electronic correlations and embedding effects in the presence of time-dependent external fields, while at the
same time satisfying the charge conservation law. The method further extends the Meir-Wingreen formula to
the time domain for initially correlated states. We study the electron dynamics of a correlated quantum wire
attached to two-dimensional leads exposed to a sudden switch on of a bias voltage using conserving many-
body approximations at Hartree-Fock, second Born and GW level. We obtain detailed results for the transient
currents, dipole moments, spectral functions, charging times, and the many-body screening of the quantum
wire as well as for the time-dependent density pattern in the leads, and we show how the time dependence of
these observables provides a wealth of information on the energy level structure of the quantum wire out of
equilibrium. For moderate interaction strengths the second Born and GW results are in excellent agreement at
all times. We find that many-body effects beyond the Hartree-Fock approximation have a large effect on the
qualitative behavior of the system and lead to a bias-dependent gap closing and quasiparticle broadening,
shortening of the transient times and washing out of the step features in the current-voltage curves.
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I. INTRODUCTION

The description of electron transport through nanoscale
systems contacted to metallic leads is currently under inten-
sive investigation especially due to the possibility of minia-
turizing integrated devices in electrical circuits.1 Several the-
oretical methods have been proposed to address the steady-
state properties of these systems.

Ab initio formulations based on time-dependent �TD� den-
sity functional theory2–7 �DFT� and current density func-
tional theory8–12 provide an exact framework to account for
correlation effects both in the leads and the device but lack a
systematic route to improve the level of the approximations.
Ad-hoc approximations have been successfully implemented
to describe qualitative features of the I /V characteristic of
molecular junctions in the Coulomb blockade regime.13–16

More sophisticated approximations are, however, needed for,
e.g., nonresonant tunneling transport through weakly coupled
molecules.7,17–20

The possibility of including relevant physical processes
through an insightful selection of Feynman diagrams is the
main advantage of many-body perturbation theory �MBPT�
over one-particle schemes. Even though computationally
more expensive MBPT offers an invaluable tool to quantify
the effects of electron correlations by analyzing, e.g., the
quasiparticle spectra, lifetimes, screened interactions, etc.
One of the most remarkable advances in the MBPT formu-
lation of electron transport was given by Meir and Wingreen
who provided an equation for the steady-state current
through a correlated device region21,22 thus generalizing the
Landauer formula.23 The Meir-Wingreen formula is cast in

terms of the interacting Green’s function and self-energy in
the device region and can be approximated using standard
diagrammatic techniques. Exploiting Wick’s theorem24 a
general diagram for the self-energy can be written in terms of
bare Green’s functions and interaction lines. Any approxima-
tion to the self-energy which contains a finite number of such
diagrams does, however, violate many conservation laws.
Conserving approximations25–28 require the resummation of
an infinite number of diagrams and are of paramount impor-
tance in nonequilibrium problems as they guarantee satisfac-
tion of fundamental conservation laws such as charge con-
servation. Examples of conserving approximations are the
Hartree-Fock �HF�, second Born �2B�, GW, T-matrix, and
fluctuation exchange �FLEX� approximations.29,30 The suc-
cess of the GW approximation31,32 in describing spectral fea-
tures of atoms and molecules33–35 as well as of interacting
model clusters36 prompted efforts to implement the Meir-
Wingreen formula at the GW level in simple molecular junc-
tions and tight-binding models.37–42

The advantage of using molecular devices in future nano-
electronics is not only the miniaturization of integrated cir-
cuits. Nanodevices can work at the terahertz regime and
hence perform operations in a few picoseconds or even
faster. Space and time can both be considerably reduced.
Nevertheless, at the subpicosecond time-scale stationary
steady-state approaches are inadequate to extract crucial
quantities such as, e.g., the switching or charging time of a
molecular diode, and consequently to understand how to op-
timize the device performance. Despite the importance that
an increase in the operational speed may have in practical
applications, the ultrafast dynamical response of nanoscale

PHYSICAL REVIEW B 80, 115107 �2009�

1098-0121/2009/80�11�/115107�16� ©2009 The American Physical Society115107-1

http://dx.doi.org/10.1103/PhysRevB.80.115107


devices is still largely unexplored. This paper wants to make
a further step toward the theoretical modeling of correlated
TD quantum transport.

Recently several practical schemes have been proposed to
tackle TD quantum transport problems of noninteracting
electrons.43–47 In some of these schemes the electron-
electron interaction can be included within a TDDFT
framework4,43 and few calculations on the transient electron
dynamics of molecular junctions have been performed at the
level of the adiabatic local density approximation.48–50 Alter-
natively, approaches based on Bohm trajectories,51,52 hierar-
chical equations of motion methods53 or the density matrix
renormalization group54 have been put forward to calculate
TD currents and densities through interacting quantum sys-
tems. So far, however, no one has extended the diagrammatic
MBPT formulation of Meir and Wingreen to the time do-
main. As in the steady-state case the MBPT formulation al-
lows for including relevant scattering mechanisms via a
proper selection of physically meaningful Feynman dia-
grams. The appealing nature of diagrammatic expansions
renders MBPT an attractive alternative to investigate out-of-
equilibrium systems.

In a recent Letter55 we proposed a time-dependent MBPT
formulation of quantum transport which is based on the real-
time propagation of the Kadanoff-Baym �KB� equations56–62

for open and interacting systems. The KB equations are
equations of motion for the nonequilibrium Green’s function
from which basic properties of the system can be calculated.
It is the purpose of this paper to give a detailed account of
the theoretical derivation and to extend the numerical analy-
sis to quantum wires connected to two-dimensional leads.
For practical calculations we have implemented the fully
self-consistent HF, 2B, and GW conserving approximations.
Our results reduce to those of steady-state MBPT implemen-
tations in the long-time limit. However, having full access to
the transient dynamics we are also able to extract novel in-
formation such as the switching and charging times, the
time-dependent renormalization of the electronic levels, the
role of initial correlations, the time-dependent dipole mo-
ments etc. Furthermore, the nonlocality in time of the 2B and
GW self-energies allows us to highlight nontrivial memory
effects occurring before the steady state is reached. We also
wish to emphasize that our approach is not limited to dc
biases. Arbitrary driving fields such as ac biases, voltage
pulses, pumping fields, etc. can be dealt with at the same
computational cost.

The paper is organized as follows. All derivations and
formulas are given in Sec. II. We present the class of many-
body systems that can be studied within our KB formulation
in Sec. II A and derive the equations of motion for the non-
equilibrium Green’s function in the device region in Sec. II B
�see also Appendix A�. The equations of motion are then
used to prove the continuity equation for all conserving ap-
proximations, Sec. II C, and to extend the Meir-Wingreen
formula to the time domain for initially correlated systems,
Sec. II D. Using an inbedding technique in Sec. II E we de-
rive the main equations to calculate the time-dependent den-
sity in the leads. In Sec. III we present the results of our TD
simulations for a one-dimensional wire connected to two-
dimensional leads. The Keldysh Green’s function, which is

the basic quantity of the KB approach, of the open wire is
studied in Sec. III A showing different time-dependent re-
gimes relevant to the subsequent analysis. In Secs. III B and
III C we calculate the TD current and dipole moment, re-
spectively. We find that the 2B and GW results are in excel-
lent agreement at all times and can differ substantially from
the HF results. We also perform a Fourier analysis of the
transient oscillations and reveal the underlying out-of-
equilibrium electronic structure of the open wire.63 The dy-
namically screened interaction of the GW approximation is
investigated in Sec. III D with emphasis on the time-scales of
retardation effects. Sec. III E is devoted to the study of the
TD rearrangement of the density in the two-dimensional
leads after the switch on of an external bias. Such an analysis
permits us to test the validity of a commonly used assump-
tion in quantum transport, i.e., that the leads remain in ther-
mal equilibrium. Finally, in Sec. IV we draw our main con-
clusions and present future perspectives.

II. THEORY

A. Model Hamiltonian

We consider a class of quantum correlated open systems
�which we call central regions� coupled to noninteracting res-
ervoirs �which we call leads�, see Fig. 1.

The Hamiltonian has the general form

Ĥ�t� = ĤC�t� + �
�

Ĥ��t� + ĤT − �N̂ , �1�

where ĤC, Ĥ�, and ĤT are the central region, the lead � and

the tunneling Hamiltonians, respectively, and N̂ is the par-
ticle number operator coupled to chemical potential �. We
assume that there is no direct coupling between the leads.
The correlated central region has a Hamiltonian of the form

ĤC�t� = �
ij,�

hij�t�d̂i�
† d̂j� +

1

2 �
ijkl

���

vijkld̂i�
† d̂j��

† d̂k��d̂l�, �2�

where i , j label a complete set of one-particle states in the

central region, � ,�� are spin indices and d̂† , d̂ are the cre-

HLC

HRCHCL

HRRHLL

HCC

HCRL R

C

FIG. 1. �Color online� Sketch of the transport setup. The corre-
lated central region �C� is coupled to semi-infinite left �L� and right
�R� tight-binding leads via tunneling Hamiltonians H�C and HC�,
�=L,R.
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ation and annihilation operators, respectively. The one-body
part of the Hamiltonian hij�t� may have an arbitrary time
dependence, describing, e.g., a gate voltage or pumping
fields. The two-body part accounts for interactions between
the electrons where vijkl are, for example in the case of a
molecule, the standard two-electron integrals of the Coulomb
interaction. The lead Hamiltonians have the form

Ĥ��t� = U��t�N̂� + �
ij,�

hij
�ĉi��

† ĉj��, �3�

where the creation and annihilation operators for the leads

are denoted by ĉ† and ĉ. Here N̂�=�i,�ĉi��
† ĉi�� is the operator

describing the number of particles in lead �. The one-body
part of the Hamiltonian hij

� describes metallic leads and can
be calculated using a tight-binding representation, or a real-
space grid or any other convenient basis set. We are inter-
ested in exposing the leads to an external electric field which
varies on a time-scale much longer than the typical plasmon
time-scale. Then, the coarse-grained time evolution can be
performed assuming a perfect instantaneous screening in the
leads and the homogeneous time-dependent field U��t� can
be interpreted as the sum of the external and the screening
field, i.e., the applied bias. This effectively means that the
leads are treated at a Hartree mean field level. We finally

consider the tunneling Hamiltonian ĤT,

ĤT = �
ij,��

Vi,j��d̂i�
† ĉj�� + ĉj��

† d̂i�� , �4�

which describes the coupling of the leads to the interacting
central region. This completes the full description of the
Hamiltonian of the system. In the next section we study the
equations of motion for the corresponding Green’s function.

B. Equation of motion for the Keldysh Green’s function

We assume the system to be contacted and in equilibrium
at inverse temperature � before time t= t0 and described by

Hamiltonian Ĥ0. For times t� t0 the system is driven out of
equilibrium by an external bias and we aim to study the
time-evolution of the electron density, current, etc. In order
to describe the electron dynamics in this system we use
Keldysh Green’s function theory �for a review see Ref. 61�
which allows us to include many-body effects in a diagram-
matic way. The Keldysh Green’s function is defined as the
expectation value of the contour-ordered product

Grs�z,z�� = − i
Tr�T �e−i�dz̄Ĥ�z̄�âr�z�âs

†�z����

Tr�e−�Ĥ0�
, �5�

where â and â† are either lead or central region operators and
the indices r and s are collective indices for position and
spin. The variable z is a time contour variable that specifies
the location of the operators on the time contour. The opera-
tor T orders the operators along the Keldysh contour dis-
played in Fig. 2, consisting of two real-time branches and the
imaginary track running from t0 to t0− i�. In the definition of
the Green’s function the trace is taken with respect to the
many-body states of the system.

All time-dependent one-particle properties can be calcu-
lated from G. For instance, the time-dependent density ma-
trix is given as

nrs�t� = − iGrs�t−,t+� , �6�

where the times t� lie on the lower/upper branch of the con-
tour. The equations of motion for the Green’s function of the
full system can be easily derived from the definition Eq. �5�
and read

i�zG�z,z�� = ��z,z��1 + H�z�G�z,z�� +	 dz̄�MB�z, z̄�G�z̄,z�� ,

�7�

− i�z�G�z,z�� = ��z,z��1 + G�z,z��H�z��

+	 dz̄G�z, z̄��MB�z̄,z�� , �8�

where �MB is the many-body self-energy, H�z� is the matrix
representation of the one-body part of the full Hamiltonian
and the integration is performed over the Keldysh contour.
This equation of motion needs to be solved with the bound-
ary conditions64,65

G�t0,z�� = − G�t0 − i�,z�� ,

G�z,t0� = − G�z,t0 − i�� , �9�

which follow directly from the definition of the Green’s
function Eq. �5�. Explicitly, the one-body Hamiltonian H for
the case of two leads, left �L� and right �R� connected to a
central region �C�, is

H = 
HLL HLC 0

HCL HCC HCR

0 HRC HRR
� , �10�

where the different block matrices describe the projections of
the one-body part H of the Hamiltonian onto different sub-
regions. They are explicitly given as

�H���i�,j���z� = �hij
� + �ij�U��z� − �������, �11�

�HCC�i�,j���z� = �hij�z� − �ij������, �12�

t0

t0 − iβ

t
−

t+

FIG. 2. �Color online� Keldysh contour 	. Times on the upper/
lower branch are specified with the subscript 
.
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�HC��i�,j�� = �H�C
† � j��,i� = Vi,j�����. �13�

We focus on the dynamical processes occurring in the central
region. These are described by the Green’s function GCC
projected onto region C. We therefore want to extract from
the block matrix structure for the Green’s function

G = 
GLL GLC GLR

GCL GCC GCR

GRL GRC GRR
� �14�

an equation for GCC. The many-body self-energy in Eq. �7�
has nonvanishing entries only for indices in region C. This is
an immediate consequence of the fact that the diagrammatic
expansion of the self-energy starts and ends with an interac-
tion line which in our case is confined in the central region
�see last term of Eq. �2��. This also implies that �MB�GCC� is
a functional of GCC only. From these considerations it fol-
lows that in the one-particle basis the matrix structure of
�MB is given as

�MB = 
0 0 0

0 �CC
MB�GCC� 0

0 0 0
� . �15�

The projection of the equation of motion �7� onto regions CC
and �C yields

�i�z1 − HCC�z��GCC�z,z�� = ��z,z��1 + �
�

HC�G�C�z,z��

+	 dz̄�CC
MB�z, z̄�GCC�z̄,z��

�16�

for the central region and

�i�z1 − H���z��G�C�z,z�� = H�CGCC�z,z�� �17�

for the projection on �C. The latter equation can be solved
for G�C, taking into account the boundary conditions of Eq.
�9�, to yield

G�C�z,z�� =	 dz̄g���z, z̄�H�CGCC�z̄,z�� , �18�

where the integral is along the Keldysh contour. Here we
defined g�� as the solution of

�i�z1 − H���z��g���z,z�� = ��z,z��1 , �19�

with boundary conditions Eq. �9�. The function g�� is the
Green’s function of the isolated and biased �-lead. We wish
to stress that a Green’s function g�� with boundary condi-
tions Eq. �9� automatically ensures the correct boundary con-
ditions for the G�C�z ,z�� in Eq. �18�. Any other boundary
conditions would not only lead to an unphysical transient
behavior but also to different steady-state results.4 This is the
case for, e.g., initially uncontacted Hamiltonians in which the
equilibrium chemical potential of the leads is replaced by the
electrochemical potential, i.e., the sum of the chemical po-
tential and the bias.

Taking into account Eq. �18� the second term on the right-
hand side of Eq. �16� becomes

�
�

HC�G�C�z,z�� =	 dz̄�em�z, z̄�GCC�z̄,z�� , �20�

where we have introduced the embedding self-energy

�em�z,z�� = �
�

�em,��z,z�� = �
�

HC�g���z,z��H�C,

�21�

which accounts for the tunneling of electrons from the cen-
tral region to the leads and vice versa. The embedding self-
energies �em,� are independent of the electronic interactions
and hence of GCC, and are therefore completely known once

the lead Hamiltonians Ĥ� of Eq. �3� are specified. Inserting
Eq. �20� back to Eq. �16� then gives the equation of motion

�i�z1 − HCC�z��GCC�z,z�� = ��z,z��1

+	 dz̄��CC
MB + �em��z, z̄�GCC�z̄,z�� . �22�

An adjoint equation can similarly be derived from Eq. �8�.
Equation �22� is an exact equation for the Green’s function
GCC, for the class of Hamiltonians of Eq. �1�, provided that
an exact expression for �CC

MB�GCC� as a functional of GCC is
inserted. In practical implementations Eq. �22� is converted
to a set of coupled real-time equations, known as the
Kadanoff-Baym equations �see Appendix A�. These equa-
tions are solved by means of time-propagation techniques.66

For the case of unperturbed systems the contributions to the
integral in Eq. �22� coming from the real-time branches of
the contour cancel and the integral needs only to be taken on
the imaginary vertical track. The equation for the Green’s
function then becomes equivalent to the one of the equilib-
rium finite-temperature formalism. In a time-dependent situ-
ation the vertical track therefore accounts for initial correla-
tions due to both many-body interactions, incorporated in
�CC

MB, and contacts with the leads, incorporated in �em. In our
implementation �see Appendix A� we always solve the con-
tacted and correlated equation first on the imaginary track,
before we propagate the Green’s function in time in the pres-
ence of an external field. However, to study initial correla-
tions we are free to set the embedding and many-body self-
energy to zero before time propagation, which is equivalent
to a neglect of the vertical track of the contour.55 This would
correspond to starting with an equilibrium configuration that
describes an initially uncontacted and noninteracting central
region. This class of initial configurations is commonly used
in quantum transport calculations, where both the interac-
tions and the couplings are considered to be switched on in
the distant past. The assumption is then made that the system
thermalizes before the bias is switched on. Even when this
assumption is fulfilled there are practical difficulties to study
transient phenomena, as one has to propagate the system
until it has thermalized before a bias can be switched on. It is
therefore an advantage of our approach that thermalization
assumptions are not necessary.
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To solve the equation of motion �Eq. �22�� we need to find
an approximation for the many-body self-energy �MB�GCC�
as a functional of the Green’s function GCC. This approxima-
tion can be constructed using diagrammatic techniques based
on Wick’s theorem familiar from equilibrium theory24 which
can straightforwardly be extended to the case of contour-
ordered Green’s functions.61 In our case the perturbative ex-
pansion is in powers of the two-body interaction and the
unperturbed system consists of the noninteracting, but con-
tacted and biased system. We stress, however, that eventually
all our expressions are given in terms of fully dressed
Green’s functions leading to fully self-consistent equations
for the Green’s function. This full self-consistency is essen-
tial to guarantee the satisfaction of the charge conservation
law, as is discussed in the next section.

C. Charge conservation

The approximations for �CC
MB�GCC� that we use in this

work involve the Hartree-Fock, second Born and GW ap-
proximation, which are discussed in detail in Refs. 35, 57,
66, and 69 and are displayed pictorially in Fig. 3.

These are all examples of so-called conserving approxi-
mations for the self-energy that guarantee satisfaction of fun-
damental conservation laws such as charge conservation. As
shown by Baym,26 a self-energy approximation is conserving
whenever it can be written as the derivative of a functional
�, i.e.,

�CC,rs
MB �GCC��z,z�� =

���GCC�
�GCC,sr�z�,z�

. �23�

This form of the self-energy is by itself not sufficient to
guarantee that the conservation laws are obeyed. A second
condition is that the equations of motion for the Green’s
function need to be solved fully self-consistently for this
form of the self-energy �see, e.g., Ref. 35�. For an open sys-
tem, like our central region, charge conservation does not
imply that the time derivative of the number of particles
NC�t� is constant in time. It rather implies that the time de-
rivative of NC�t�, also known as the displacement current, is
equal to the sum of the currents that flow into the leads.
Below we give a proof in which the importance of the
�-derivability is clarified. We start by writing the number of
particles NC�t� as �see Eq. �6��

NC�t� = − iTrC�GCC�t−,t+�� , �24�

where the trace is taken over all one-particle indices in the
central region. Subtracting the equation of motion �22� from
its adjoint and setting z= t− ,z�= t+ then yields

dNC�t�
dt

= − 2 Re TrC�	 dz̄�CC�t−, z̄�GCC�z̄,t+�
 , �25�

where �CC=�CC
MB+�em. By similar reasonings we can calcu-

late the current I� flowing across the interface between lead
� and the central region. The total number of particles in
lead � is N�=−iTr��G���t− , t+��, where the trace is taken
over all one-particle indices in lead �. Projecting the equa-
tion of motion �7� on region �� yields

i�zG���z,z�� = ��z,z��1 + H���z�G���z,z��

+ H�C�z�GC��z,z�� . �26�

Subtracting this equation from its adjoint one finds

I��t� = −
dN��t�

dt
= 2 Re Tr��H�CGC��t−,t+��

= 2 Re TrC�GC��t−,t+�H�C� . �27�

Substituting in this expression the explicit solution �18� for
G�C as well as the solution for its adjoint GC� we can write
the current I� in terms of the embedding self-energy �em,� as

I��t� = 2 Re TrC�	 dz̄GCC�t−, z̄��em,��z̄,t+�
 . �28�

Exploiting this result Eq. �25� takes the form

dNC�t�
dt

= IL + IR −	 dz̄TrC��CC
MB�t−, z̄�GCC�z̄,t+�

− GCC�t−, z̄��CC
MB�z̄,t+�� . �29�

Charge conservation implies that the integral in Eq. �29� van-
ishes. This is a direct consequence of the invariance of the
functional � under gauge transformations. Indeed, changing
the external potential by an arbitrary gauge function �r�z�
�with the boundary condition �r�t0�=�r�t0− i��� changes the
Green’s function according to26

GCC,rs����z,z�� = ei�r�z�GCC,rs�z,z��e−i�s�z��, �30�

as can be checked directly from the equations of motion for
the Green’s function. From its definition Eq. �23� it follows
that the �-functional consists of closed diagrams in terms of
the Green’s function GCC. The phase factors of Eq. �30� thus
cancel each other at every vertex and therefore � is indepen-
dent of the functions �r. This implies that

0 = �
q�C

��

��q�z�
= �

qrs�C
	 dz̄dz̄�

��

�GCC,sr�z̄�, z̄�

�GCC,sr�z̄�, z̄�
��q�z�

= �
qrs�C

	 dz̄dz̄��CC,rs
MB �z̄, z̄��

�GCC,sr�z̄�, z̄�
��q�z�

, �31�

where the sums run over all one-particle indices in the cen-
tral region. Here we explicitly used the �-derivability con-

FIG. 3. Diagrammatic representation of the many-body approxi-
mations for �CC

MB.
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dition of the self-energy of Eq. �23�. If we now insert the
derivative of the Green’s function with respect to �r from
Eq. �30� in Eq. �31� and evaluate the resulting expression in
z= t� we obtain the integral in Eq. �29�. Therefore the last
term in Eq. �29� vanishes and the time derivative of the num-
ber of particles NC�t� in the central region is equal to the sum
of the currents that flow into the leads. We mention that in
the long-time limit the number of particles in region C is
constant provided that the system attains a steady state. In
this case IL+ IR=0 and we recover the result of Ref. 40 as a
special case. The importance of using conserving approxima-
tions in steady-state transport has been carefully addressed in
Refs. 40 and 41 where a comparison between conserving and
nonconserving calculations of the differential conductance is
discussed in detail.

D. Equation for the time-dependent current

The time-dependent current in Eq. �28� accounts for the
initial many-body and embedding effects. In the absence of
an external perturbation I��t�=0 at any time. The exact van-
ishing of the current is guaranteed by the contribution of the
vertical track in the integral. Discarding this contribution is
equivalent to starting with an initially uncorrelated and un-
contacted system in which case there will be some thermal-
ization time during which charge fluctuations will give rise
to nonzero transient currents.

Equation �28� involves an integral over the Keldysh con-
tour. Using the extended Langreth theorem4,67,68 for the con-
tour of Fig. 2 we can express I��t� in terms of real-time and
imaginary-time integrals

I��t� = 2 Re TrC�	
t0

t

dt̄GCC

 �t, t̄��em,�

A �t̄,t�

+ 	
t0

t

dt̄GCC
R �t, t̄��em,�


 �t̄,t�

− i	
0

�

d�GCC
� �t,���em,�

� ��,t�
 , �32�

where we refer to Appendix A for the definition of the vari-
ous superscripts. Equation �32� provides a generalization of
the Meir-Wingreen formula21 to the transient time-domain.
As anticipated the last term in Eq. �32� explicitly accounts
for the effects of initial correlations and initial-state depen-
dence. If one assumes that both dependences are washed out
in the long-time limit �t→��, then the last term in Eq. �32�
vanishes and we can safely take the limit t0→−�. Further-
more, if in this limit the Green’s function becomes a function
of the relative times only, i.e., GCC�t , t��→GCC�t− t��, we
can Fourier transform with respect to the relative time to
obtain the Green’s function GCC��� and the self-energy
�em��� in frequency or energy space. This is typically the
case for dc bias voltages where limt→�U��t�=U�. In terms of
the Fourier transformed quantities Eq. �32� reduces to the
Meir-Wingreen formula21 for the steady-state current

I�
S = − iTrC	

−�

� d�

2�
������GCC


 ��� − 2i�f����A���� ,

�33�

where

����� = − 2 Im��em,�
R ���� , �34�

A��� = −
1

2�i
�GCC

R ��� − GCC
A ���� , �35�

and where f� is the Fermi distribution for lead � with elec-
trochemical potential �+U�. This expression has been used
recently to perform steady-state transport calculations at GW
level.37,40,41 The present formalism allows for an extension of
this work to the time-dependent regime.

E. Electron density in the leads

In our investigations we are not only interested in calcu-
lating the density in the central region, but are also interested
in studying the densities in the leads. In the following we
will therefore derive an equation from which these lead den-
sities can be calculated. If we on the right-hand side of Eq.
�26� insert the adjoint of Eq. �18� we obtain the expression

i�zG���z,z�� = ��z,z��1 + H���z�G���z,z��

+	 dz̄�in,��z, z̄�g���z̄,z�� , �36�

where we defined the inbedding self-energy as

�in,��z,z�� = H�CGCC�z,z��HC�. �37�

If we solve Eq. �36� in terms of g�� and take the time argu-
ments at t� we obtain

G���t−,t+� = g���t−,t+� +	 dz̄dz̄̄g���t−, z̄��in,��z̄, z̄̄�g���z̄̄,t+� .

�38�

We see from Eq. �6� that with this equation we can obtain the
spin occupation of orbital i in lead � by taking r=s= i��.
The integral in Eq. �38� is taken along the Keldysh contour.
In practice we solve the Kadanoff-Baym equations for GCC
first. After this we construct the inbedding self-energy �in
and calculate the lead density from Eq. �38� converted into
real time, using the conversion table of Ref. 68.

III. NUMERICAL RESULTS

In this section we specialize to central regions consisting
of quantum chains modeled using a tight-binding parametri-
zation. We studied the case for which the chain extends from
site 1 to site 4 and is coupled to left and right two-
dimensional reservoirs with nine transverse channels, as il-
lustrated in Fig. 1. The parameters for the system are chosen
as follows. The longitudinal and transverse nearest-neighbor
hoppings in the leads are set to T�

� =T�
� =−2.0, �=L,R,

whereas the on-site energy a� is set equal to the chemical
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potential, i.e., a�=�. The leads are therefore half-filled. Pre-
cise definitions of these parameters can be found in Appen-
dix B. The end sites of the central chain are coupled only to
the terminal sites of the central row in both leads and the
hopping parameters are V1,5L=V4,5R=−0.5 �see Appendix B
for the labeling�. The central chain has on-site energies hii
=0 and hoppings hij =−1.0 between neighboring sites i and j.
The electron-electron interaction in the central region has the
form vijkl=vij�il� jk with

vij = �vii i = j

vii

2�i − j�
i � j � �39�

and interaction strength vii=1.5. The above choice of vijkl is
appropriate for molecularlike systems weakly coupled to
leads, and is commonly used in the study of isolated mol-
ecules based on the Pariser-Parr-Pople Hamiltonian. A care-
ful derivation of the latter Hamiltonian and a discussion of
different parametric forms can be found in Refs. 70–72. We
further note that the type of interactions of Eq. �39� appear
naturally from a calculation of the Coulomb integrals vijkl in
a basis of localized Wannier states, as was done in Refs. 37
and 40 in a first-principles study at MBPT level of steady-
state quantum transport through molecules. Full use of the
set of two-electron integrals vijkl would lead to a similar
first-principles scheme within our present approach �see Ref.
57 as a first step toward this goal�.

For the parameters that we used, the equilibrium Hartree-
Fock levels of the isolated chain lie at �1=0.39, �2=1.32,
�3=3.19, �4=4.46. In all our simulations the chemical poten-
tial is fixed between the highest occupied molecular orbital
�HOMO� �2 and the lowest unoccupied molecular orbital
�LUMO� �3 levels at �=2.26 and the inverse temperature �
is set to �=90 which corresponds to the zero temperature
limit �i.e., results do not change anymore for higher values of
��. In this work we will consider the case of a suddenly
applied constant bias at an initial time t0, i.e., we take
U��t�=U� for t� t0 and U��t�=0 for t� t0. Additionally, the
bias voltage is applied symmetrically to the leads, i.e., UL=
−UR=U, and the total potential drop is 2U.

A. Keldysh Green’s functions in the double-time plane

All physical quantities calculated in our work have been
extracted from the different components of the Keldysh
Green’s function. Due to their importance we decided to
present the behavior of the lesser Green’s function G
 as
well as of the right Green’s function G� in the double-time
plane for the Hartree-Fock approximation. The Green’s func-
tions corresponding to the 2B and GW approximations are
qualitatively similar but show more strongly damped oscilla-
tions.

In Fig. 4 we display the imaginary part of GCC,HH

 �t , t�� in

the basis of the initial Hartree-Fock molecular orbitals, for an
applied bias U=1.2. This matrix element corresponds to the
HOMO level of the molecular chain. The value of the
Green’s function on the time diagonal, i.e., nH�t�
=Im�GCC,HH


 �t , t�� gives the level occupation number per
spin. We see that nH�t� decays from a value of 1.0 at the

initial time to a value of 0.5 at time t=30. An analysis of the
LUMO level occupation nL�t� shows that almost all the
charge is transferred to this level. The discharging of the
HOMO level and the charging of the LUMO level is also
clearly observable in the dipole moment as it causes a den-
sity oscillation in the system �see Sec. III C�. When we move
away from the time-diagonal we consider the time-
propagation of holes in the HOMO level. We observe a
damped oscillation the frequency of which corresponds to
the removal energy of an electron from the HOMO level,
leading to a distinct peak in the spectral function �see Sec.
III B below�.

The imaginary part of GCC,HH
� �t ,�� within the HF approxi-

mation is displayed in Fig. 5 for real times between t=0 and
t=30 and imaginary times from �=0 to �=5. This mixed-
time Green’s function accounts for initial correlations as well

FIG. 4. �Color online� The imaginary part of the lesser Green’s
function GCC,HH


 �t1 , t2� of the central region in molecular orbital
basis corresponding to the HOMO level of the central chain. Bias
voltage U=1.2, HF approximation.

FIG. 5. �Color online� The imaginary part of the mixed Green’s
function GCC,HH

� �t ,�� of the central region in molecular orbital ba-
sis. Bias voltage U=1.2, HF approximation.
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as initial embedding effects �within the HF approximation
only the latter�. At t=0 we have the ground-state Matsubara
Green’s function and as the real time t increases all elements
of GCC

� �t ,�� approach zero independently of the value of �.
This behavior indicates that initial effects die out in the long-
time limit and that the decay rate is directly related to the
time for reaching a steady state. A very similar behavior is
found within the 2B and GW approximations but with a
stronger damping of the oscillations.

B. Time-dependent current

The time-dependent current at the right interface between
the chain and the two-dimensional lead is shown in Fig. 6 for
the HF, 2B, and GW approximations for two different values
of the applied bias, U=0.8 �weak� and 1.2 �strong�. The first
remarkable feature is that the 2B and GW results are in ex-
cellent agreement at all times both in the weak and strong
bias regime while the HF current deviates from the corre-
lated results already after few time units. This result indicates
that a chain of four atoms is already long enough for screen-
ing effects to play a crucial role. The 2B and GW approxi-
mations have in common the first three diagrams of the per-
turbative expansion of the many-body self-energy illustrated
in Fig. 3. We thus conclude that the first order exchange
diagram �Fock� with an interaction screened by an electron-
hole propagator with a single polarization bubble �with fully
dressed Green’s functions� contains the essential physics of
the problem. We also wish to emphasize that the 2B approxi-
mation includes the so-called second-order exchange dia-
gram which is also quadratic in the interaction. This diagram
is less relevant due to the restricted phase-space that two
electrons in the chain have to scatter and exchange.

We then turn our attention to the spectral function which
is defined as

A�T,�� = − Im TrC	 dt

2�
ei�t�GCC

� − GCC

 ��T +

t

2
,T −

t

2
� .

�40�

For values of T after the transients have died out the spectral
function becomes independent of T. For such times we de-

note the spectral function by A��� and it is easy to show that
A���=TrC�A���� where A��� is defined in Eq. �35�. This
function displays peaks that correspond to removal energies
�below the chemical potential� and electron addition energies
�above the chemical potential�. The spectral functions of our
system are displayed in Fig. 7. At weak bias the HOMO-
LUMO gap in the HF approximation is fairly the same as the
equilibrium gap whereas the 2B and GW gaps collapse caus-
ing both the HOMO and the LUMO to move in the bias
window. As a consequence the steady-state HF current is
notably smaller than the 2B and GW currents. This effect has
been previously observed by Thygesen41 and is confirmed by
our time-dependent simulations.

A new scenario does, however, emerge in the strong bias
regime. The HF HOMO and LUMO levels move into the
bias window and lift the steady-state current above the cor-
responding 2B and GW values. This can be explained by
observing that the peaks of the HF spectral function A��� are
very sharp compared to the rather broadened structures in the
2B and GW approximations, see Fig. 7. In the correlated
case the HOMO and LUMO levels can be exploited only
partially by the electrons to scatter from left to right and we
thus observe a suppression of the current with respect to the
HF case. From a mathematical point of view the steady-state
current is roughly proportional to the integral of A��� over
the bias window which is larger in the HF approximation.

The time-evolution of the spectral function A�T /2,�� as a
function of T is illustrated in Fig. 8 for the case of the HF
and the 2B approximation. For these results, the ground-state
system was propagated without bias up to T=40 after which
a bias was suddenly turned on. The HF peaks remain rather
sharp during the entire evolution and the HOMO-LUMO
levels come nearer to each other at a constant speed. On the
contrary, the broadening of the 2B peaks remains small dur-
ing the initial transient regime �up to T=70� to then increase
dramatically. This behavior indicates that there is a critical
charging time after which an enhanced renormalization of
quasiparticle states takes place causing a substantial reshap-
ing of the equilibrium spectral function.

The time-dependent current at the right interface as a
function of applied voltage and time is shown in Fig. 9 for
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t

FIG. 6. �Color online� Transient currents flowing into the right
lead for the HF, 2B, and GW approximations with the applied bias
U=0.8 �three lowest curves� and U=1.2.
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FIG. 7. �Color online� Spectral functions A��� for HF �upper-
most plot�, 2B �middle plot�, and GW �bottom plot� approximation
with the applied bias U=0.8 �solid line� and U=1.2 �dashed line�. A
vertical dashed line that intersects the � axis at the chemical poten-
tial �=2.26 is also displayed.
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the HF and 2B approximation. The figures nicely illustrate
how steady-state results are obtained from time-dependent
calculations: after the transients have died out we see the
formation of the characteristic I-V curves familiar from
steady-state transport calculations. In the HF approximation
one clearly observes the typical staircase structure with steps
that correspond to an applied voltage that includes one more
resonance in the bias window. These steps appear at bias
voltages U=0.9 and U=1.8. This result is corroborated by
the left panel of Fig. 10 in which we display the bias-
dependent spectral function for the HF approximation. Here
we see a sudden shift in the spectral peaks at these voltages.
The HF results thus bear a close resemblance to the standard
noninteracting results, the main difference being that the HF
position of the levels gets renormalized by the applied bias.

We now turn our attention to the 2B approximation in the
right panel of Fig. 9. We notice a clear step at bias voltage of
U=0.7 but the broadening of the level peaks due to quasi-
particle collisions completely smears out the second step and
the current increases smoothly as a function of the applied
voltage. This is again corroborated in the right panel of Fig.
10 where we observe a sudden broadening of the spectral
function at a bias of U=0.7. To make this effect clearly vis-
ible in the figure we divided the spectral functions for biases
up to U=0.6 by a factor of 30. The increased broadening of
the spectral functions at higher biases can be attributed to an
increased phase space available to quasiparticle scattering at
higher bias, as is discussed in more detail in Ref. 41. We
further notice that for the 2B approximation there is a faster

gap closing as a function of the bias voltage as compared to
the HF approximation. Very similar results are obtained
within the GW approximation. We can therefore conclude
that electronic correlations beyond Hartree-Fock level have a
major impact on both transient and steady-state currents.

C. Time-dependent dipole moment

To study how the charge redistributes along the chain af-
ter a bias voltage is switched on we calculated the time-
dependent dipole moment

d�t� = �
i=1

4

xini�t� , �41�

where the xi are the coordinates of the sites of the chain �with
a lattice spacing of one� with origin between sites 2 and 3. As
observed in Sec. III A the chain remains fairly charge neutral
during the entire time evolution. However, a charge rear-
rangement occurs as can be seen from Fig. 11. At U=1.2
both the HOMO and the LUMO are inside the bias window,
the lowest level remains below and the highest level above.
Electrons in the initially populated HOMO then move to the
empty LUMO and get only partially reflected back. This gen-
erates damped oscillations with the HOMO-LUMO gap as
the main frequency, a nonvanishing steady value for the
LUMO population and a partially filled HOMO. Due to the
different �odd/even� approximate spatial symmetry of the
HOMO/LUMO levels a net dipole moment develops.

As we pointed out in a recent Letter,55 the oscillations in
the transient current reflect the electronic transitions between
the ground state levels of the central region and the electro-
chemical potentials of the left and right leads. However, the
oscillations are visible in all observable quantities through
the oscillations of the Green’s function discussed in Sec.
III A. Detailed information on the electronic level structure
of the chain can be extracted from the Fourier transform of
d�t�, see inset in Fig. 11. One clearly recognizes the presence
of sharp peaks superimposed to a broad continuum. The
peaks occur at energies corresponding to electronic transi-
tions from lead states at the left/right electrochemical poten-
tial to chain eigenstates or to intrachain transitions. We will
denote a transition energy between leads L and R and chain
eigenstate i by ��Li and ��iR. Similarly we will denote a
transition energy between states in the central region as ��ij.

FIG. 8. �Color online� Real-time evolution of the spectral func-
tion A�T /2,�� for the HF �left panel� and the 2B approximation
�right panel� for an applied bias of U=1.2. On the horizontal axis
the time T and on the vertical axis the energy �.

FIG. 9. �Color online� Transient right current IR�U , t� as a function of applied bias voltage and time in the HF �left panel� and 2B �right
panel� approximations.
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In the inset of Fig. 11 the main peak structures are labeled
from the highest to the lowest transition energies with letters
�a�–�e� and we will use these labels to denote the various
transitions discussed below. The possible transition energies
can be determined from the position of the peaks in the spec-
tral functions and the lead levels. As expected the dominant
peak occurs at the intrachain transition energy �c� ��23
�1.5. This roughly corresponds to the average of the equi-
librium and nonequilibrium gaps and, therefore, must be
traced back to charge fluctuations between the HOMO and
LUMO. The other observable transition energies are �b�
��L2�2.0, �e� ��L3�0.5, and �d� ��L4�1.0 from the left
lead and �e� ��1R�0.65, �e� ��2R�0.4, �b� ��3R�2.0, and
�a� ��4R�3.4 from the right lead. Some of the peaks with
transition energies close to each other ��b� ��L2 and ��3R
and �e� ��L3 and ��1R and ��2R� are merged together and
broadened. The broadening is not only due to embedding and
many-body effects but also to the dynamical renormalization
of the position of the energy levels. Further information can
be extracted from the peak intensities. The peak of the �d�
��L4 transition is very strong due to the sharpness of that

particular resonance, see Fig. 7, and its initial low popula-
tion. On the contrary, the transition ��L1 from the left lead to
the highly populated level �1 is extremely weak due to the
Pauli blockade and not visible. Correlation effects beyond
Hartree-Fock theory cause a fast damping of all so far dis-
cussed transitions. Only the transitions �d� ��L4 and �c� ��23
are visible in the Fourier spectrum of the 2B and GW ap-
proximations.

D. Time-dependent screened interaction W

In Fig. 12 we show the trace of the lesser component of
the time-dependent screened interaction of the GW approxi-
mation in the double-time plane for a bias of U=1.2. This
interaction is defined as W=v+vPW where P is the full po-
larization bubble35 �with dressed Green’s functions� of the
connected and correlated system, and gives information on
the strength and efficiency of the dynamical screening of the
repulsive interactions. The good agreement between the 2B
and GW approximations implies that the dominant contribu-
tion to the screening comes from the first bubble diagram,
that is W
�vP
v. From Fig. 12 we see that the trace of the

FIG. 10. �Color online� Spectral function A��� for the HF �left panel� and 2B �right panel� approximation, as a function of the bias
voltage. For the 2B approximation the spectral functions for bias voltages until U=0.6 were divided by a factor 30 �blue lines in the figure�
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FIG. 11. �Color online� Dipole moment of the central region as
a function of time for bias U=1.2. The inset shows the absolute
value of the Fourier transform of the dipole moment.

FIG. 12. �Color online� Imaginary part of the trace of the
screened interaction W
�t1 , t2� in the GW approximation.
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imaginary part of W
�t , t� is about 3. Considering that the
trace of the instantaneous bare interaction v is 6 we conclude
that the screening diagrams reduce the magnitude of the re-
pulsion by a factor of 2. Another interesting feature of the
screened interaction is that it decays rather fast when the
separation of the time arguments increases. From Fig. 12 we
see that after a time t�7 the retarded interaction is negligi-
bly small. It is worth noting that such a time scale is much

smaller than the typical time scales to reach a steady state,
see Fig. 6.

E. Time-dependent Friedel oscillations in the leads

We implemented the method described in Sec. III E which
is based on the inbedding technique to investigate the elec-
tron dynamics in the leads. This study is of special impor-

0.499 0.4992 0.4994 0.4996 0.4998 0.5 0.5002 0.5004

0.49 0.491 0.492 0.493 0.494 0.495 0.496 0.497 0.498 0.499 0.5

FIG. 13. �Color online� Snapshots of the density in left lead within the HF approximation after the switch on of a bias of U=1.2. On the
horizontal axes the transverse dimension of the lead �nine rows wide, with the site connected to the chain in the center�. The vertical axis
extends to ten layers deep. Upper panel left: Initial density, Upper panel right: density at time t=1.7, Lower left panel: density at time t
=3.6, Lower right panel: density at time t=10. The upper color bar refers to the initial density in the upper left panel. The lower color bar
refers to the remaining panels.
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tance since it challenges one of the main assumption in quan-
tum transport calculations, i.e., that the leads remain in
thermal equilibrium during the entire evolution.

In Fig. 13 we show the evolution of the density in the left
two-dimensional nine-row wide lead �see Fig. 1� after the
sudden switch on of a bias voltage. We display snapshots of
the lead densities at times t=0, 1.7, 3.6, and 10 up to ten
layers deep into the leads �where to improve the visibility we
interpolated the density between the sites�. Since the atomic
wire is connected to the central site it acts as an impurity and
we see density oscillations in the leads following a diamond-
like pattern. These present Friedel oscillations that propagate
along preferred directions.

The preferred directions in the density pattern can be un-
derstood from linear response theory. Given a square lattice
with nearest neighbor hopping T=T�=T� the retarded density
response function in Fourier space reads

��q,�� =	 dk

�2��2

f��k� − f��k+q�
� − �k + �k+q + i�

= 2	 dk

�2��2

f��k���k − �k+q�
�� + i��2 − ��k − �k+q�2 , �42�

where �k=2T�cos kx+cos ky� is the energy dispersion and the
integral is done over the first Brillouin zone and f is the
Fermi distribution function. At half filling the Fermi energy
is zero and the Fermi surface is a square with vertices in
�0, ��� and ��� ,0�. The dominant contribution to the in-
tegral comes from the values of k close to such vertices
where the density of states has van Hove singularities. The
response function ��q=�Q ,�=0�, with Q= �� ,�� the nest-
ing vector, is discontinuous for �=1. Indeed, for every oc-
cupied k there exists an �
1 such that �k+q=�k
0 and the
integrand diverges at zero frequency. On the other hand for
��1 the vector k+q corresponds to an unoccupied state
with energy �k+q�0 and due to the presence of the Fermi
function the integrand of Eq. �42� is well behaved even for
�=0. The discontinuity at Q= �� ,�� is analogous to the dis-
continuity at 2kF in the electron gas and leads to the Friedel
oscillations with diamond symmetry observed in Fig. 13. By
adding reciprocal lattice vectors we find that there are four
equivalent directions for these Friedel oscillations given by
the vectors Q= � �� , ���. Each of these vectors gives in
real space rise to a density change of the form �n�r��eiQ·r.
Therefore a single impurity in a two-dimensional �2D� lattice
induces a cross-shaped density pattern. Due to the fact that in
our case the lattice ends at the central chain, we only observe
two arms of this cross.

The results of Fig. 13 also allow for testing the assump-
tion of thermal equilibrium in the leads. The equilibrium
density �top-left panel� is essentially the same as its equilib-
rium bulk value at 0.5. After the switching of the bias a
density corrugation with the shape of a diamond starts to
propagate deep into the lead. The largest deviation from the
bulk density value occurs at the corners of the diamond and
is about 2% at the junction while it reduces to about 1% after
ten layers. We also verified that the discrepancy is about
three times larger for leads with only three transverse chan-
nels. We conclude that the change in the lead density is in-

versely proportional to the cross section. Our results suggest
that for a mean-field description of 2D leads with nine trans-
verse channels it is enough to include few atomic layers for
an accurate self-consistent time-dependent calculations of the
Hartree potential� .

IV. CONCLUSIONS

We proposed a time-dependent many-body approach
based on the real-time propagation of the KB equations to
tackle quantum transport problems of correlated electrons.
We proved the continuity equation for any �-derivable self-
energy, a fundamental property in nonequilibrium conditions,
and generalized the Meir-Wingreen formula to account for
initial correlations and initial embedding effects. This re-
quires an extension of the Keldysh contour with the thermal
segment �t0 , t0− i�� and the consideration of mixed-time
Green’s functions having one real and one imaginary-time
argument. The Keldysh Green’s function in the device region
GCC is typically used to calculate currents and densities in
the device. In this work we also developed an exact inbed-
ding scheme to extract from GCC the TD density in the leads.

The theoretical framework and the implementation
scheme were tested for one-dimensional wires connected to
two-dimensional leads using different approximations for the
many-body self-energy. We found that already for four-sites
wires screening effects play a crucial role. The 2B and GW
approximations are in excellent agreement at all times for
moderate interaction strength �of the same order of magni-
tude of the hopping integrals� while the HF approximation
tends to deviate from the GW and 2B results after very short
times. These differences were related to the sharp peaks of
the HF spectral function as compared to the rather broad
structures observed in 2B and GW. Our numerical results
indicate that the largest part of the correlation effects are well
described by the first bubble diagram of the self-energy,
common to both the 2B and GW approximation. The
screened interaction was explicitly calculated in the GW ap-
proximation showing that the screening reduces the interac-
tion strength by a factor of 2 and that retardation effects are
absent after a time-scale much shorter than the typical tran-
sient time scale. The electron dynamics obtained using a cor-
related self-energy differ from the HF dynamics in many
respects: �1� At moderate bias the HOMO-LUMO gap closes
while in the HF approximation it remains fairly constant; �2�
The HOMO and LUMO resonances are rather sharp during
the transient time and then suddenly broaden when ap-
proaching the steady state. This indicates the occurrence of
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FIG. 14. �Color online� Tight-binding system for finite 2D leads
connected to a central scattering region.
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an enhanced renormalization of quasiparticle states. The HF
widths instead remain unaltered. �3� The transient time in the
correlated case is much shorter than in HF, see Fig. 11.

The transient behavior of time-dependent quantities such
as the current and dipole moment exhibit oscillations of char-
acteristic frequencies that reflect the underlying energy level
structure of the system. Calculating the ultrafast response of
the device to an external driving field thus constitutes an
alternative method to gain insight into the quasiparticle po-
sitions and lifetimes out of equilibrium. We performed a dis-
crete Fourier analysis of the TD dipole moment in the tran-
sient regime and related the characteristic frequencies to
transitions either between different levels of the wire or be-
tween the levels of the wire and the electrochemical potential
of the leads. The height of the peaks in the Fourier transform
can be interpreted as the amount of density which oscillates
between the levels of a given transition. In all approxima-
tions we found that the density mainly sloshes between the
HOMO and the LUMO.

One of the main assumptions in quantum transport calcu-
lations is that the leads remain in thermal equilibrium and
therefore that the bulk density is not affected by the presence
of the junction. To investigate this assumption we considered
two-dimensional leads thus going beyond the so-called wide-
band-limit approximation. By virtue of an exact inbedding
technique we calculated the lead density both in and out
equilibrium. In the proximity of the junction the density ex-
hibits Friedel-like oscillations whose period depends on the
value of the Fermi momentum along the given direction.

In conclusion the real-time-propagation of the KB equa-
tions for open and inhomogeneous systems provide a very
powerful tool to study the electron dynamics of a typical
quantum transport setup. In this work we considered only dc
biases. However, more complicated driving fields such as ac
biases or pumping fields can be dealt with at the same com-
putational cost and the results will be the subject of a future
publication. Besides currents and densities the MBPT frame-
work also allows for calculating higher order correlators. It is
our intention to use the KB equations to study shot noise in
quantum junctions using different levels of approximation
for the Green’s function.

APPENDIX A: THE EMBEDDED KADANOFF-BAYM
EQUATIONS

To apply Eq. �22� in practice we need to transform it to
real-time equations that we solve by time propagation. This
can be done in Eq. �22� by considering time arguments of the
Green’s function and self-energy on different branches of the
contour. We therefore have to define these components first.
Let us therefore consider a function on the Keldysh contour
of the general form

F�z,z�� = F��z���z,z�� + ��z,z��F��z,z�� + ��z�,z�F
�z,z�� ,

�A1�

where ��z ,z�� is a contour Heaviside function,61 i.e.,
��z ,z��=1 for z later than z� on the contour and zero other-
wise, and ��z ,z��=�z��z ,z�� is the contour delta function. By

restricting the variables z and z� on different branches of the
contour we can define the various components of F as

F��t,t�� = F�t
,t�� � , �A2�

F��t,�� = F�t�,t0 − i�� , �A3�

F���,t� = F�t0 − i�,t�� , �A4�

FM�� − ��� = − iF�t0 − i�,t0 − i��� , �A5�

and

FR/A�t,t�� = F��t���t − t�� � ���t 
 t���F��t,t�� − F
�t,t��� .

�A6�

For the Green’s function there is no singular contribution,
i.e., G�=0, but the self-energy has a singular contribution of
Hartree-Fock form, i.e., ��=�HF�G�.61 With these defini-
tions we can now convert Eq. �22� to equations for the sepa-
rate components. This is conveniently done by using the con-
version table in Ref. 68. We then obtain the following set of
equations:

i�tG��t,t�� = HCC�t�G��t,t�� + ��R · G���t,t��

+ ��� · GA��t,t�� + ��� � G���t,t�� , �A7�

− i�t�G
��t,t�� = G��t,t��HCC�t�� + �GR · ����t,t��

+ �G� · �A��t,t�� + �G� � ����t,t�� ,

�A8�

i�tG��t,�� = HCC�t�G��t,�� + ��R · G���t,�� + ��� � GM��t,�� ,

�A9�

− i�tG���,t� = G���,t�HCC�t� + �G� · �A���,t� + �GM � �����,t� ,

�A10�

− ��GM�� − ��� = 1��� − ��� + HCCGM�� − ���

+ i��M � GM��� − ��� , �A11�

which are commonly known as the Kadanoff-Baym equa-
tions. The symbols · and � are a shorthand notation for the
real-time and imaginary-time convolutions

�a · b��t,t�� = 	
0

�

a�t, t̄�b�t̄,t��dt̄ ,

�a � b��t,t�� = − i	
0

�

a�t,��b��,t��d� . �A12�

In practice we first solve Eq. �A11� which describes the ini-
tial equilibrium Green’s function. This equation is decoupled
from the other two, since �M depends on GM only. The ini-
tial conditions for the other Green’s functions G� and G� � are
then determined by GM as follows:

G��0,0� = iGM�0+� , �A13�
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G
�0,0� = iGM�0−� , �A14�

G��0,�� = iGM�− �� , �A15�

G���,0� = iGM��� . �A16�

With these initial conditions the Eqs. �A7�–�A10� can be
solved using a time-stepping algorithm.66

APPENDIX B: EMBEDDING SELF-ENERGY

From Eqs. �21� and �13� we see that the embedding self-
energy has the form

�em,�,kl�z,z�� = �
ij

Vk,i�g��,ij�z,z��Vj�,l, �B1�

where k and l label orbitals in the central region. As can be
seen from this equation, the calculation of the embedding
self-energy requires the determination of g��. Since for the
isolated lead � the time-dependent field is simply a gauge,
g�� is of the form

g���z,z�� = g��
0 �z,z��exp�− i	

z�

z

dz̄U��z̄�� , �B2�

where g��
0 is the Green’s function for the unbiased lead, and

the integral in the exponent is a contour integral. The Green’s
function g��

0 has the form

g��
0 �z,z�� = ��z,z��g��

0,��z,z�� + ��z�,z�g��
0,
�z,z�� . �B3�

It therefore remains to specify g��
0,�. In the following we will

for convenience separate out the spin part from the Green’s
function and write g��,i�,j��

0 =����g��,ij
0 . We will now give an

explicit expression for g��,ij
0 for the case of two-dimensional

leads. The case of three dimensions can be treated similarly.
We consider a lead Hamiltonian of a tight-binding form that
is separable in the longitudinal �x� and the transverse �y�
directions. Therefore the indices in the one-particle matrix hij

�

of Eq. �3� denote sites i= �x ,y� , j= �x� ,y�� where x and y are
integers running from zero to Nx

� and Ny
� �Fig. 14�. At the end

of the derivation we take the limit Nx
�→�. The Hamiltonian

matrix for the leads is then of the form

hij
��t� = �xx��yy�

� + �yy��xx�
� + a��ij , �B4�

where � and � are matrices that represent longitudinal and
transverse chains and a� is an on-site energy. Hence

g��,ij
0,� �z,z�� = �

p

Uip
� g��,p

0,� �z,z��Upj
�†, �B5�

where p= �px , py� is a two-dimensional index spanning the
same one-particle space. The matrix U�=D�� � D�� is a di-
rect product of the unitary matrices D�� and D�� that diago-
nalize the matrices �� and �� in Eq. �B4�. The functions g��,p

0,�

have the explicit form

g��,p
0,
 �z,z�� = if��p��e−i�

z�
z

dz̄��p�−��, �B6�

g��,p
0,� �z,z�� = i�f��p�� − 1�e−i�

z�
z

dz̄��p�−��, �B7�

with f���=1 / �e���−��+1� the Fermi distribution function. In
these expressions �p�=�py�

� +�px�
� +a�, where �py�

� and �px�
�

are the eigenvalues of matrices �� and ��. In the case the
matrices �� and �� represent tight-binding chains with
nearest-neighbor hoppings T�

� and T�
� and zero on-site en-

ergy, we have

Dxpx

�� =� 2

Nx
� + 1

sin� �xpx

Nx
� + 1

� , �B8�

�px�
� = 2T�

� cos� �px

Nx
� + 1

� , �B9�

and similarly for the transverse transformation matrix Dypy

��

and energy �py�
� . If we insert these expressions into Eq. �B5�

and take the limit Nx→� such that we can replace summa-
tion over px by an integration over the angular variable �
=�px / �Nx

�+1�, then we obtain

g��,ij
0,
 �z,z�� =

4i

Ny
� + 1

�
py=1

Ny
�

sin� �ypy

Ny
� + 1

�sin� �y�py

Ny
� + 1

�
�

1

�
	

0

�

d� sin�x��sin�x���

� f��p��e−i�
z�
z

dz̄��p�−��, �B10�

where now

�p� = a� + 2T�
� cos� �py

Ny
� + 1

� + 2T�
� cos � . �B11�

The expression for g��,ij
0,� is obtained from Eq. �B10� by sim-

ply replacing the Fermi function f by f −1. Let us now turn
to the embedding self-energy. In this work we consider the
case that we only have hopping elements Vi,k� between cen-
tral sites i and the first transverse layer of the leads, which
are labeled by elements k= �1,y� where y=1, . . . ,Ny

� �Fig.
14�. However, the entire formalism can be extended to more
general cases. This means that we take

Vi,k� = �Vi,y� if k = �1,y�
0 otherwise

� . �B12�

In that case in Eq. �B10� only the contribution with x=x�
=1 survives. Then the product of the sine functions can be
written in terms of the eigenenergies of the isolated leads as

�em,�,kl

 �z,z�� = �

y,y�,py=1

Ny
�

4iVk,y�Vy��,l

Ny
� + 1

� sin� �ypy

Ny
� + 1

�sin� �y�py

Ny
� + 1

�
�

1

�
	

Epy�
−

Epy�
+ d�

2�T�
��
�1 − �Epy�

2T�
� �2
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� f���e−i�
z�
z

dz̄��−�+U��z̄��, �B13�

where we defined Epy�=�−a�−�py�
� and Epy�

� =a�

+�py�
� �2�T�

��. The expression for �em,�
� is obtained from Eq.

�B13� by simply replacing the Fermi function f by f −1. In
the case that there is no transverse coupling, i.e., T�

� =0, the
integral is independent of py and the sum over py can be
performed to yield �yy�. Then the 2D self-energy becomes a
sum of self-energies over separate one-dimensional leads.
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